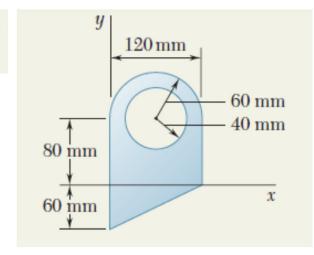
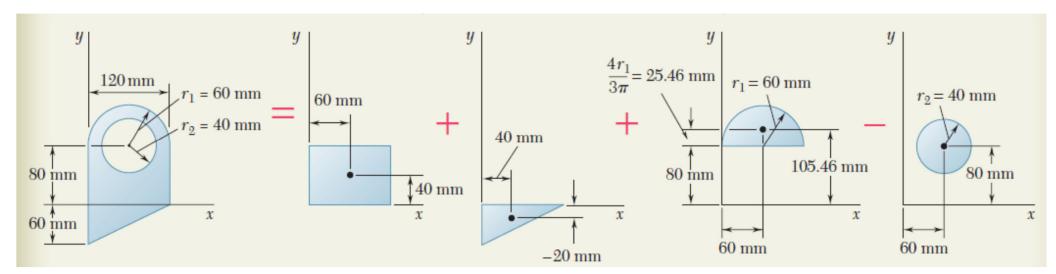
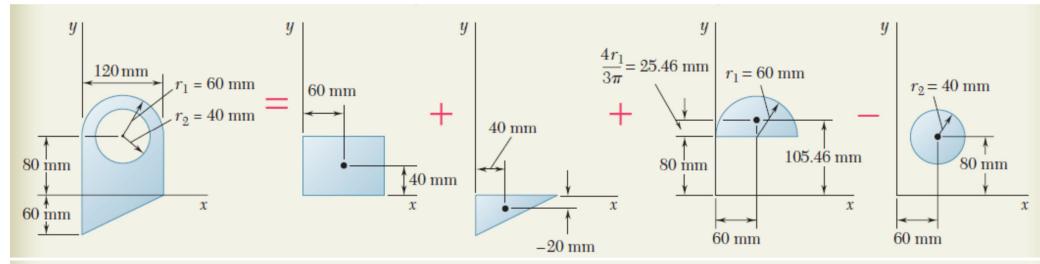
For the plane area shown, determine (a) the first moments with respect to the x and y axes, (b) the location of the centroid.







Component	A, mm ²	\overline{x} , mm	\overline{y} , mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
Rectangle	$(120)(80) = 9.6 \times 10^3$	60	40	$+576 \times 10^{3}$	$+384 \times 10^{3}$
Triangle	$\frac{1}{2}(120)(60) = 3.6 \times 10^3$	40	-20	$+144 \times 10^{3}$	-72×10^{3}
Semicircle	$\frac{1}{2}\pi(60)^2 = 5.655 \times 10^3$	60	105.46	$+339.3 \times 10^{3}$	$+596.4 \times 10^{3}$
Circle	$-\pi(40)^2 = -5.027 \times 10^3$	60	80	-301.6×10^{3}	-402.2×10^{3}
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \overline{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

First Moments of the Area.

$$Q_x = \Sigma \overline{y}A = 506.2 \times 10^3 \text{ mm}^3$$

$$Q_y = \Sigma \overline{x}A = 757.7 \times 10^3 \text{ mm}^3$$

Location of Centroid.

$$\overline{X}\Sigma A = \Sigma \overline{x}A: \qquad \overline{X}(13.828 \times 10^3 \text{ mm}^2) = 757.7 \times 10^3 \text{ mm}^3$$

$$\overline{X} = 54.8 \text{ mm}$$

$$\overline{Y}\Sigma A = \Sigma \overline{y}A: \qquad \overline{Y}(13.828 \times 10^3 \text{ mm}^2) = 506.2 \times 10^3 \text{ mm}^3$$

$$\overline{Y} = 36.6 \text{ mm}$$

Center of Mass and Centroids: Composite Bodies and Figures

Example:

Locate the centroid of the shaded area

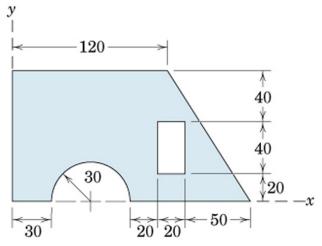
Solution: Divide the area into four elementary

shapes: Total Area = $A_1 + A_2 - A_3 - A_4$

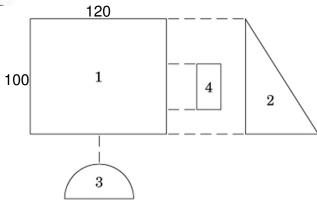
PART	$rac{A}{ ext{mm}^2}$	\overline{x} mm	$\frac{ar{y}}{ ext{mm}}$	$\bar{x}A$ mm ³	$\bar{y}A$ mm ³
1	12 000	60	50	720 000	600 000
2	3000	140	100/3	420 000	100 000
3	-1414	60	12.73	-84 800	-18 000
4	-800	120	40	-96 000	-32 000
TOTALS	12 790			959 000	650 000

$$\left[\overline{X} = \frac{\Sigma A \overline{x}}{\Sigma A} \right] \qquad \overline{X} = \frac{959\ 000}{12\ 790} = 75.0 \text{ mm}$$

$$\left[\overline{Y} = \frac{\Sigma A \overline{y}}{\Sigma A} \right] \qquad \overline{Y} = \frac{650\ 000}{12\ 790} = 50.8 \text{ mm}$$

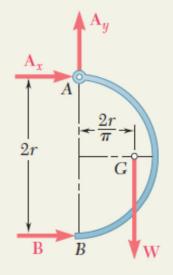


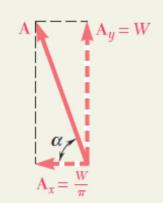
Dimensions in millimeters

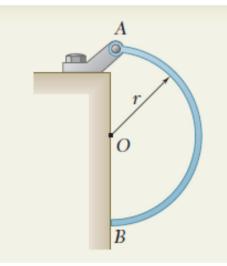


A uniform semicircular rod of weight W and radius r is attached to a pin at A and rests against a frictionless surface at B. Determine the reactions at A and B.

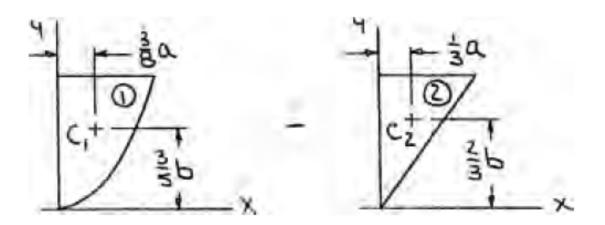
$$A = 1.049W \ 5 \ 72.3^{\circ} \qquad B = 0.318W \rightarrow$$

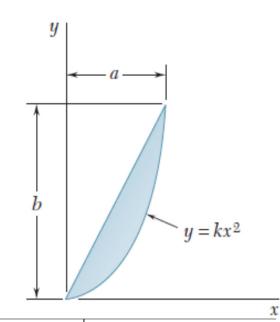






For the area shown, determine the ratio a/b for which $\bar{x}=\bar{y}$





	A	\overline{x}	\overline{y}	$\overline{x}A$	₹A
1	$\frac{2}{3}ab$	$\frac{3}{8}a$	$\frac{3}{5}b$	$\frac{a^2b}{4}$	$\frac{2ab^2}{5}$
2	$-\frac{1}{2}ab$	$\frac{1}{3}a$	$\frac{2}{3}b$	$-\frac{a^2b}{6}$	$-\frac{ab^2}{3}$
Σ	$\frac{1}{6}ab$			$\frac{a^2b}{12}$	<u>ab²</u> 15

Then

$$\overline{X} \Sigma A = \Sigma \overline{X} A$$

or

$$\overline{X}\left(\frac{1}{6}ab\right) = \frac{a^2b}{12}$$
$$\overline{X} = \frac{1}{2}a$$

 $\overline{Y}\Sigma A = \Sigma \overline{y}A$

$$\overline{Y}\left(\frac{1}{6}ab\right) = \frac{ab^2}{15}$$

or

$$\overline{Y} = \frac{2}{5}b$$

Now

$$\overline{X} = \overline{Y} \Rightarrow \frac{1}{2}a = \frac{2}{5}b$$
 or $\frac{a}{b} = \frac{4}{5}$

or
$$\frac{a}{b} = \frac{4}{5}$$